首页> 外文OA文献 >Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites:Divergent forest carbon maps from plots & space
【2h】

Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites:Divergent forest carbon maps from plots & space

机译:来自地块和卫星的亚马逊森林碳密度的显着差异估计:来自地块和河流的不同森林碳图。空间

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

AimThe accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset.LocationTropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1MethodsTwo recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons.ResultsThe two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%.Main conclusionsPantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.
机译:目的准确绘制森林碳储量图对于了解全球碳循环,评估毁林造成的排放以及合理的土地利用规划至关重要。遥感(RS)目前是用于此目的的关键工具,但RS不能直接估算植被生物量,因此可能会错过森林结构的重大空间变化。我们使用一个大型独立场数据集来测试泛热带碳图的表述准确性。位置亚马逊盆地的热带森林。可以在以下位置访问现场图数据的永久存档:http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1方法将最近的两张泛碳植被碳RS图与唯一的地图数据集进行比较,涉及树木测量位于九个国家的413个大型库存地块中。将RS图直接与野外图进行比较,并使用野外数据的kriging进行基于区域的比较。结果这两个RS碳图未能捕获使用413块地面图从茂密的树林中检测到的亚马逊森林碳中的主要梯度。东北高大的森林,西南低矮的森林。地块图和RS图之间的差异远远超过了这些研究中给出的不确定性,整个区域的高估或低估了> 25%,而据报道该图的区域不确定性则<5%。政府和旨在通过使用碳补偿来减少毁林的项目所使用,但可能会有重大的地区偏见。必须修改碳映射技术,以解决树木密度和异度法中已知的生态变化,以创建适合碳核算的地图。在树冠高度与地上生物量之间使用单一关系不可避免地会产生较大的,空间相关的误差。这对森林保护和遥感社区都构成了重大挑战,因为无法从空间可靠地绘制木材密度和物种集合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号